LLM Chat Interface#
Learn how to create an AI-powered chat interface using n8n with large language models for intelligent conversations and automated responses.
π― What You'll Build#
An AI chat interface that: - Handles user messages via web interface or messaging platforms - Integrates with various LLM providers (OpenAI, Gemini, etc.) - Maintains conversation context and history - Provides intelligent, contextual responses - Supports custom prompts and system instructions
π Requirements#
- API access to LLM provider (OpenAI, Google Gemini, etc.)
- n8n instance running
- Web server or messaging platform for user interface
- Basic understanding of APIs and webhooks
π§ Workflow Overview#
Key Components#
- Message Trigger - Receives user messages
- Context Manager - Maintains conversation history
- LLM Integration - Calls AI model for responses
- Response Processor - Formats and delivers responses
- History Storage - Saves conversation logs
π Step-by-Step Guide#
1. Choose Your LLM Provider#
OpenAI (GPT)#
- Get API Key from OpenAI platform
- Set up billing and review pricing
- Choose model (GPT-3.5-turbo, GPT-4, etc.)
Google Gemini#
- Get API Key from Google AI Studio
- Enable Gemini API in Google Cloud Console
- Configure quota limits and monitoring
2. Set Up Message Trigger#
Web Form Interface#
- Add Form Trigger node
- Configure form fields: - User message (required) - User ID/session (hidden field) - Context options (optional)
Telegram Bot#
- Add Telegram Trigger node
- Configure bot token
- Set up message handling
Webhook Endpoint#
- Add Webhook node
- Configure unique endpoint path
- Set response mode
3. Configure LLM Integration#
OpenAI Integration#
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | |
Gemini Integration#
1 2 3 4 5 6 7 8 9 10 11 12 | |
4. Manage Conversation Context#
Session-based Context#
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | |
Context Injection#
1 2 3 4 5 6 7 8 9 10 11 12 13 | |
π€ Advanced Chat Features#
Custom Instructions and Personas#
-
System Prompts
1 2 3 4 5 6 7 8
const personas = { professional: "You are a professional business assistant. Be formal, concise, and helpful.", creative: "You are a creative writing assistant. Be imaginative, inspiring, and supportive.", technical: "You are a technical expert. Provide detailed, accurate information with examples.", casual: "You are a friendly chat companion. Be casual, engaging, and humorous." }; const selectedPersona = personas[context.persona] || personas.professional; -
Dynamic Context Switching
1 2 3 4 5 6 7
// Detect conversation intent and adjust persona if (userMessage.toLowerCase().includes('help me code')) { context.persona = 'technical'; } else if (userMessage.toLowerCase().includes('story') || userMessage.toLowerCase().includes('creative')) { context.persona = 'creative'; }
Multi-turn Conversations#
-
Follow-up Questions
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
// Generate follow-up questions based on context function generateFollowUp(response, context) { const followUpPatterns = { 'code': [ "Would you like me to explain any part of this code?", "Do you need help implementing this in a specific language?" ], 'explanation': [ "Would you like more details on any particular aspect?", "Do you have any specific questions about this topic?" ] }; const category = categorizeResponse(response); const suggestions = followUpPatterns[category] || []; return suggestions[Math.floor(Math.random() * suggestions.length)]; } -
Conversation State Management
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Track conversation state and intent function updateConversationState(message, context) { const intent = detectIntent(message); context.state = { ...context.state, current_intent: intent, _pending_follow_up: needsFollowUp(intent), last_topic: extractTopic(message), conversation_depth: (context.state?.conversation_depth || 0) + 1 }; return context; }
π Integration Examples#
Customer Support Chatbot#
-
Knowledge Base Integration
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
// Search knowledge base before responding async function getKnowledgeBaseAnswer(query) { const searchResults = await searchKnowledgeBase(query); if (searchResults.length > 0 && searchResults[0].relevance > 0.8) { return { use_kb: true, answer: searchResults[0].content, confidence: searchResults[0].relevance }; } return { use_kb: false }; } // Enhance LLM prompt with knowledge base info const kbInfo = await getKnowledgeBaseAnswer(userMessage); const enhancedPrompt = kbInfo.use_kb ? `Based on our knowledge base: ${kbInfo.answer}\n\nUser question: ${userMessage}` : userMessage; -
Human Handoff
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Detect when human intervention is needed function needsHumanHandoff(userMessage, aiResponse, context) { const handoffTriggers = [ 'speak to human', 'real person', 'representative', 'complaint', 'angry', 'frustrated' ]; return handoffTriggers.some(trigger => userMessage.toLowerCase().includes(trigger) ) || context.state?.conversation_depth > 10; }
Educational Tutor#
-
Adaptive Learning
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
// Track learning progress and adapt responses function trackLearningProgress(response, topic, difficulty) { const progress = { topic: topic, difficulty: difficulty, comprehension_score: analyzeComprehension(response), timestamp: new Date().toISOString() }; // Adjust future responses based on progress if (progress.comprehension_score < 0.6) { return { simplify: true, provide_examples: true, check_understanding: true }; } else if (progress.comprehension_score > 0.8) { return { increase_difficulty: true, introduce_advanced_concepts: true }; } } -
Interactive Exercises
1 2 3 4 5 6 7 8 9 10 11 12 13
// Generate practice exercises based on topic function generateExercise(topic, difficulty) { const exercisePrompt = ` Create a ${difficulty} level exercise about ${topic}. Include: 1. A clear problem statement 2. Step-by-step hints 3. The correct solution 4. Explanation of key concepts `; return generateLLMResponse(exercisePrompt); }
π Analytics and Monitoring#
Conversation Analytics#
-
User Engagement Metrics
1 2 3 4 5 6 7 8 9 10
// Track conversation metrics function trackConversationMetrics(conversation) { return { duration: calculateConversationDuration(conversation), message_count: conversation.conversation.length, user_satisfaction: analyzeUserSatisfaction(conversation), topic_distribution: analyzeTopics(conversation), response_quality: scoreResponseQuality(conversation) }; } -
Performance Monitoring
1 2 3 4 5 6 7 8
// Monitor LLM performance const performanceMetrics = { response_time: Date.now() - requestStartTime, token_usage: response.usage.total_tokens, model_used: model, api_cost: calculateCost(response.usage), error_rate: trackErrors() };
Quality Assurance#
- Response Quality Scoring
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Evaluate AI response quality function scoreResponseQuality(userMessage, aiResponse) { const factors = { relevance: calculateRelevance(userMessage, aiResponse), completeness: checkCompleteness(userMessage, aiResponse), clarity: assessClarity(aiResponse), accuracy: verifyAccuracy(aiResponse), helpfulness: measureHelpfulness(aiResponse) }; return { overall_score: Object.values(factors).reduce((a, b) => a + b) / Object.keys(factors).length, ...factors }; }
π¨ User Interface Options#
Web Chat Interface#
-
HTML Chat Widget
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
<div id="chat-container"> <div id="chat-messages"></div> <div id="chat-input-container"> <input type="text" id="user-input" placeholder="Type your message..."> <button onclick="sendMessage()">Send</button> </div> </div> <script> async function sendMessage() { const input = document.getElementById('user-input'); const message = input.value.trim(); if (message) { // Display user message addMessage('user', message); // Send to n8n webhook const response = await fetch('/webhook/chat', { method: 'POST', headers: { 'Content-Type': 'application/json' }, body: JSON.stringify({ message: message }) }); const aiResponse = await response.json(); addMessage('assistant', aiResponse.message); input.value = ''; } } </script> -
Advanced Features - Typing indicators - Message timestamps - File upload support - Conversation history - User preferences
Mobile App Integration#
- React Native Chat
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
const ChatScreen = () => { const [messages, setMessages] = useState([]); const [inputText, setInputText] = useState(''); const sendMessage = async () => { const userMessage = { text: inputText, user: true }; setMessages([...messages, userMessage]); try { const response = await fetch(n8nWebhookUrl, { method: 'POST', body: JSON.stringify({ message: inputText }) }); const aiResponse = await response.json(); setMessages(prev => [...prev, { text: aiResponse.message, user: false }]); } catch (error) { console.error('Error sending message:', error); } setInputText(''); }; return ( <FlatList data={messages} renderItem={({ item }) => ( <MessageBubble message={item.text} isUser={item.user} /> )} keyExtractor={(item, index) => index.toString()} ListFooterComponent={ <View style={styles.inputContainer}> <TextInput value={inputText} onChangeText={setInputText} placeholder="Type a message..." /> <Button title="Send" onPress={sendMessage} /> </View> } /> ); };
π§ͺ Testing and Optimization#
Response Quality Testing#
-
Test Scenarios
1 2 3 4 5 6 7 8 9 10 11 12 13
const testCases = [ { input: "Explain quantum computing in simple terms", expected_topics: ["quantum", "computing", "simple explanation"], min_length: 100, max_length: 500 }, { input: "Write a Python function to sort a list", expected_code: true, expected_language: "python" } ]; -
Performance Testing - Response time benchmarks - Token usage optimization - Cost analysis per interaction - Scalability testing
π Troubleshooting#
Common Issues#
API Rate Limits - Implement proper rate limiting - Use request queuing - Monitor usage metrics - Upgrade API plan if needed
Poor Response Quality - Refine system prompts - Add better context management - Implement feedback mechanisms - Use temperature tuning
High Latency - Optimize API calls - Use streaming responses - Implement caching - Consider edge deployment
Context Loss - Improve conversation state management - Use vector databases for long-term memory - Implement context compression - Regular context cleanup
π‘οΈ Security and Privacy#
Data Protection#
-
User Privacy - Anonymize user data - Implement data retention policies - Secure data transmission - Obtain proper consent
-
Content Filtering
1 2 3 4 5 6 7 8 9 10 11 12 13
// Implement content moderation function moderateContent(text) { const prohibitedContent = [ 'hate speech', 'violence', 'illegal activities', 'personal data requests' ]; return prohibitedContent.some(content => text.toLowerCase().includes(content) ); }
API Security#
-
Access Control - Secure API key management - Implement authentication - Rate limiting per user - Monitor for abuse
-
Input Validation - Sanitize user inputs - Validate message length - Filter malicious content - Prevent prompt injection
π Advanced Features#
Multimodal Capabilities#
-
Image Analysis - Process uploaded images - Generate image descriptions - Answer questions about images - Create visual content
-
Voice Integration - Speech-to-text input - Text-to-speech responses - Voice command recognition - Real-time voice chat
Personalization#
-
User Profiling
1 2 3 4 5 6 7 8 9 10 11
// Build user profiles for personalization function updateUserProfile(userId, message, response) { const profile = getUserProfile(userId); profile.interests = updateInterests(profile.interests, message); profile.communication_style = analyzeStyle(message, response); profile.knowledge_level = assessKnowledgeLevel(response); profile.preferred_topics = extractTopics(message); saveUserProfile(userId, profile); } -
Adaptive Responses - Learn user preferences - Adjust response style - Remember past interactions - Predict user needs
Related Tutorials: - Form Submission - Learn about form handling - Email Integration - Email notification setup
Resources: - OpenAI API Documentation - Google Gemini API - n8n AI Integration Guide